شاخص pi رأسی گرافهای فولرنی

thesis
abstract

شاخص توپولوژیک عددی حقیقی است که به یک گراف نسبت داده می شود و تحت یک ریختی گراف ثابت می ماند. شاخص های توپولوژیک برای بررسی خواص فیزیکی-شیمیایی ترکیبات شیمیایی به کار می روند. شاخص ‎ pi ‎ در مقاله ای در سال ‎2009‎ در تلاش جهت یافتن رابطه ای دقیق برای محاسبه ی شاخص ‎ pi ‎ رأسی حاصل ضرب دکارتی گراف ها معرفی شد. بعدها کاربردهای فراوانی از این شاخص در علوم نانو و شیمی به دست آمد. مطالعه ی ریاضی این شاخص از کارهایی است که اخیراً توسط اشرفی، یوسفی، ایلیچ، دیودی، استوانویچ و گوتمن به انجام رسیده است. در این تحقیق شاخص ‎ pi ‎ رأسی یک دسته ی نامتناهی از گراف های فولرنی را به دست می آوریم. هم چنین زنجیر و پیوند ‎ n ‎ نسخه از این فولرن را در نظر گرفته و شاخص ‎ pi ‎ رأسی آن ها را محاسبه می کنیم. ‎

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

شاخص اصلاح شده سگد گراف های فولرنی

یک شاخص توپولوژیک برای گرافg ‎، ثابت عددی است که کمیتی فیزیکی یا شیمیایی را توصیف می کند. این اعداد در شیمی نظری به منظور کدگذاری مولکول ها برای طراحی اجسام شیمیایی با خواص فیزیکی-شیمیایی داده شده و فعالیتهای زیستی و داروشناسی به کار می روند. شاخص سگد در سال ‎1994‎ توسط ایوان گوتمن به عنوان تعمیمی از شاخص وینر تعریف شد. کاربردهای این شاخص در مدل سازی ساختارهای نانو و همبستگی آن با برخی شاخص های...

15 صفحه اول

بررسی شاخص های توپولوژیک همبندی خروج از مرکز، دوبخشی سازی یالی و رأسی و محاسبه ی آن در مورد گراف های فولرنی

یک شاخص توپولوژیک یک کمیت عددی است که به یک گراف نسبت داده می شود، به طوری که تحت یکریختی گراف ها پایاست. از شاخص های توپولوژیکی که در این رساله مورد بررسی قرار گرفته است، می توان از عدد دوبخشی سازی یالی، رأسی، شاخص همبندی خروج از مرکز، شاخص وینر، سگد، پادماکار-ایوان رأسی و شاخص زاگرب اول ودوم نام برد. عدد دوبخشی سازی یالی یک گراف g عبارت است از کمترین تعداد یالی از g که به منظور به دست آوردن ز...

15 صفحه اول

گرافهای هم انرژی

فرض کنید یک گراف ساده داده شده است. هر مقدار ویژه ماتریس مجاورت این گراف یک مقدار ویژه آن نامیده می شود. انرژی یک گراف عبارت است از مجموع قدرمطلق های مقادیر ویژه آن. دو گراف با انرژی یکسان گرافهای هم انرژی نامیده می شوند. این مقاله به توصیف تاریخی و شرحی از نتایج جدید در این زمینه می پردازد.

full text

بررسی گرافهای تجزیه پذیر رأسی، هم پوشش ناپذیری و نظم کستلنومامفورد

رأس x از گراف g را رأس هم احاطه شده می نامیم اگر به ازای رأس y ،همسایگی بست? y زیرمجموع? همسایگی بست? x باشد و گراف g هم پوشش ناپذیر نامیده می شود اگر فاقد یال بوده و یا شامل یک رأس هم احاطه شده مانندx باشد بطوریکه g-x هم پوشش ناپذیر است. نشان می دهیم که گرافهای تجزیه پذیر رأسی فاقد- ( c4,c5)، هم پوشش ناپذیر هستند و ثابت می کنیم اگر g یک گراف خوش پوشش فاقد- (c4,c5,c7 )، باشد آنگاه تجزیه پذیر...

15 صفحه اول

گرافهای هم انرژی

فرض کنید یک گراف ساده داده شده است. هر مقدار ویژه ماتریس مجاورت این گراف یک مقدار ویژه آن نامیده می شود. انرژی یک گراف عبارت است از مجموع قدرمطلق های مقادیر ویژه آن. دو گراف با انرژی یکسان گرافهای هم انرژی نامیده می شوند. این مقاله به توصیف تاریخی و شرحی از نتایج جدید در این زمینه می پردازد.

full text

Dalitz plot analysis of the D+->pi(-)pi(+)pi(+) decay

G. Bonvicini, D. Cinabro, M. Dubrovin, A. Lincoln, D. M. Asner, K. W. Edwards, P. Naik, R. A. Briere, T. Ferguson, G. Tatishvili, H. Vogel, M. E. Watkins, J. L. Rosner, N. E. Adam, J. P. Alexander, D. G. Cassel, J. E. Duboscq, R. Ehrlich, L. Fields, R. S. Galik, L. Gibbons, R. Gray, S. W. Gray, D. L. Hartill, B. K. Heltsley, D. Hertz, C. D. Jones, J. Kandaswamy, D. L. Kreinick, V. E. Kuznetsov,...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه کاشان - دانشکده ریاضی

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023